548 research outputs found

    Computed Tomography Scan and ICD Interaction

    Get PDF
    Although it has been considered a safe procedure, computed tomography scanning uses high doses of radiation and can cause malfunctioning in those patients with ICD when the radiation is directly incident on the device. We present a case of ventricular oversensing during a thoracic computed tomography

    High resolution model mesh and 3D printing of the Gaudí's Porta del Drac

    Get PDF
    This article intends to explore the limits of scanning with the technology of 3D Laser Scanner and the 3D printing, as an approximation to its application for the survey and the study of singular elements of the architectural heritage. The case study we developed is the Porta del Drac, in the Pavelló Güell, designed by Antoni Gaudí. We divided the process in two parts, one about how to scan and optimize the survey with the Laser Scanner Technology, made with a Faro Forus3D x330 scanner. The second one, about the optimization of the survey as a highresolution mesh to have a scaled 3D model to be printed in 3D, for the musealization of the Verdaguer House of Literature in Vil.la Joana (Barcelona), a project developed by the Museum of History of Barcelona, in tribute to Jacint Verdaguer. In the first place, we propose a methodology for the survey of this atypical model, which is of special interest for several factors: the geometric complexity in relation to the occlusions, the thickness of the metallic surfaces, the hidden internal structure partially seen from the outside, the produced noise in its interior, and the instrumental errors. These factors make the survey process complex from the data collection, having to perform several scans from different positions to cover the entire sculpture, which has a geometry composed of a variety of folds that cause occlusions. Also, the union of the positions and the average of the surfaces is of great relevance, since the elements of the sculpture are constructed by a metal plate of 2mm, therefore, the error in the union of all these many positions must be smaller than this. Moreover, optimization of the cloud has a great difficulty because of the noise created by the instrumental error as it is a metal sculpture and because of noise point clouds that are generated inside the internal folds of the wings, which are made with a welded wire mesh with little spaces between them. Finally, the added difficulty that there is an internal structure between elements of the parts of the Drac that are partially hidden and therefore cannot be recorded. Secondly, we expose the procedures performed to move from a point cloud to an optimal high-resolution mesh to be printed in 3D, adapting it to all the limitations that this printing technique entails. On the one hand, for the meshing process, a previous classification of the point cloud by pieces (wings, chains, mosaics, head ...) is made and an internal structure is re-assembled to avoid floating parts. On the other hand, the selection of the 3D printing technique, in this case FDM (Fused Deposition Modelling), limits the size of the model so it needs to be cut by determined maximum dimension, and also it limits the minimum thickness of the model’s surface, that is to say, the model cannot be directly scaled to the desired size because the 2mm surfaces would be too thin to be printed. This research intends to advance the knowledge of data acquisition, optimization, modelling and 3D printing, with a case study of great complexity. A process that can be systematized and applied to other models.Postprint (published version

    Preliminary study for simultaneous detection and quantification of androgenic anabolic steroids using ELISA and pattern recognition techniques

    Full text link
    A first step towards the multidetection, identification and quantification of anabolic androgenic steroids by enzyme-linked immunosorbent assay (ELISA) has been performed in this study. This proposal combines multiple competitive ELISA assays with different cross-reactivity profiles and multivariate data analysis techniques. Data have been analyzed by principal component analysis in conjunction with a novel K-nearest line classifier. This proposal allows simultaneous detection of up to four different steroids in the range of concentration from 0.1 to 316.2 nM with a total rate of 90.6% of correct detection, even in the presence of cross-reactivities. A methodology for concentration prediction is also presented with satisfactory results

    High resolution model mesh and 3D printing of the Gaudí's Porta del Drac

    Get PDF
    This article intends to explore the limits of scanning with the technology of 3D Laser Scanner and the 3D printing, as an approximation to its application for the survey and the study of singular elements of the architectural heritage. The case study we developed is the Porta del Drac, in the Pavelló Güell, designed by Antoni Gaudí. We divided the process in two parts, one about how to scan and optimize the survey with the Laser Scanner Technology, made with a Faro Forus3D x330 scanner. The second one, about the optimization of the survey as a highresolution mesh to have a scaled 3D model to be printed in 3D, for the musealization of the Verdaguer House of Literature in Vil.la Joana (Barcelona), a project developed by the Museum of History of Barcelona, in tribute to Jacint Verdaguer. In the first place, we propose a methodology for the survey of this atypical model, which is of special interest for several factors: the geometric complexity in relation to the occlusions, the thickness of the metallic surfaces, the hidden internal structure partially seen from the outside, the produced noise in its interior, and the instrumental errors. These factors make the survey process complex from the data collection, having to perform several scans from different positions to cover the entire sculpture, which has a geometry composed of a variety of folds that cause occlusions. Also, the union of the positions and the average of the surfaces is of great relevance, since the elements of the sculpture are constructed by a metal plate of 2mm, therefore, the error in the union of all these many positions must be smaller than this. Moreover, optimization of the cloud has a great difficulty because of the noise created by the instrumental error as it is a metal sculpture and because of noise point clouds that are generated inside the internal folds of the wings, which are made with a welded wire mesh with little spaces between them. Finally, the added difficulty that there is an internal structure between elements of the parts of the Drac that are partially hidden and therefore cannot be recorded. Secondly, we expose the procedures performed to move from a point cloud to an optimal high-resolution mesh to be printed in 3D, adapting it to all the limitations that this printing technique entails. On the one hand, for the meshing process, a previous classification of the point cloud by pieces (wings, chains, mosaics, head ...) is made and an internal structure is re-assembled to avoid floating parts. On the other hand, the selection of the 3D printing technique, in this case FDM (Fused Deposition Modelling), limits the size of the model so it needs to be cut by determined maximum dimension, and also it limits the minimum thickness of the model’s surface, that is to say, the model cannot be directly scaled to the desired size because the 2mm surfaces would be too thin to be printed. This research intends to advance the knowledge of data acquisition, optimization, modelling and 3D printing, with a case study of great complexity. A process that can be systematized and applied to other models.Postprint (published version

    SCAN to BIM beyond a final BIM: why, when and how

    Get PDF
    Building Information Modeling (BIM) has become a must in architecture when it comes to new buildings, but in heritage buildings and in rehabilitation projects, it is still a debate if it’s useful or efficient to make a BIM model. In this paper we analyze and propose When, How and Why modeling in BIM should be a standard process for rehabilitation projects in which an architectural has been performed. In the field of heritage architecture, archeology and rehabilitation, to create an as-built model to work on, it is needed an architectural survey using a laser scan or/and photogrammetry, which captures dense 3D measurements of the building, so architects can make studies of its geometry, detect pathologies and use it as a base for their new designs. However, even though the 3D surveying technics has evolved in the recent years, in the world architecture, the point clouds are still pretty unknown, therefore for many architects are useless information in that format. So, it is necessary to convert this 3D information as point clouds to a more common file like 2D vector drawings in CAD. For this process, it should be question if and how modeling in BIM from the point cloud (scan to BIM) helps to this purpose, without taking into the account that modeling in BIM you get a BIM model, which in rehabilitation and heritage is still not common enough to work with it. Analyzing the information of the point clouds, the typology of the building, the timings, the precision required, and how works a BIM software (Revit) and its libraries; we conclude that, in some particular projects, as far as technology and architecture field are nowadays, to make a useful documentation for rehabilitation modeling in BIM the building in a specific LoD directly from a point cloud (scan to BIM), it is an upgrade in the process beyond the fact of having a BIM model, that is to say, you can get the same documents, but with better quality results, in a more efficient way and less time spend. We ended up with a list of characteristics a building must have for this scan to BIM process is an efficient step and how this should be performed. This paper explores the efficiency of the Scan to BIM process for specific rehabilitation projects, testing it in two different case studies: a large scale building with repetitive elements (old military hospital in Valencia) and a small one with unique elements (classified single family house in Barcelona).Postprint (author's final draft

    Filtering Surfaces in Surveys with Multiple Overlapping: Sagrada Familia

    Get PDF
    The heritage survey with the Terrestrial Laser Scanner (TLS) allows the document of the geometry of the building and to constitute a 3D point cloud as a register of its conservation state. When complex buildings with architectural and sculptural elements are scanned, there are a lot of captured data that is not valid, because of the instrumental error and foreign elements of the buildings. For that reason, the point cloud must be cleaned with the objective to obtain a final model from which different products could be created, such as plans, technical documents and 3D models to print. For this cleaning process, in this article with the case of study is Antoni Gaudi’s Sagrada Familia (Fachada del Nacimiento), we propose a methodology based on applying some filers, considering the fact that more than 3000 positions were realized, 750 of them belong to the same facade with positions that have a lot of overlapping data. Therefore, in a same zone of the building there is data scanned from multiple positions in different ways, so we can find there any kind of error, such as the noise from boundary effects, glass flections and mobile objects, and scans realized from a scissor lift, that have been previously validated. Different point cloud filtering processes have been studied, through the point cloud itself (position by position and with a unitary cloud), and by meshing it. Every process requires the knowledge of how the scan was realized, what type of error dominates in each zone is analyzed. Therefore, each filtering option accomplish the requirements established after the analysis.Postprint (author's final draft

    The pyrolytical fingerprint of nitrogen compounds reflects the content and quality of soil organic carbon

    Full text link
    The increasing land degradation is a problem that affects many soils in countries with a Mediterranean climate. In this aspect the soil organic matter (SOM) plays an important role, due to its progressive biodegradation parallels to desertification and the concomitant emissions of CO2 to the atmosphere. These facts make basic research on the structure and composition of SOM important for soil conservation. Organic N-compounds in soil are of particular interest due to their chemical structure and speciation status in the SOM which can play an important role in soil N bioavailability and in the whole biogeochemical activity of the soil. For this reason, studying the possible relationships between the different N-compounds and soil properties, such as SOM content and its chemical characteristics, can provide new information on the stabilization and storage of organic C in soil. For this research, 30 soils from Spanish ecosystems with a wide range of SOM content were selected. The molecular composition of SOM in whole soil samples including N-compounds, was analyzed by analytical pyrolysis (Py-GC/MS). A parallel characterization of SOM quality was carried out using solid state 13C NMR and UV–vis spectroscopy. Based on their chemical structure, the N-compounds identified by Py-GC/MS were classified into seven main groups: indoles, pyridines, pyrazoles, benzonitriles, imidazoles, pyrroles and quinolines. Multivariate statistical analyses were used to explore the relationship between the distribution of the above compounds and the SOM content. A significant predictive model was obtained for the SOM using partial least squares (PLS) regression, which was used to predict SOM content using the pyrolytic N-compounds as descriptors. This would show that there is a relationship between the patterns of N-compounds and the biogeochemical mechanisms involved in the different C storage levels the soils. Also, multidimensional scaling (MDS) and principal components analysis (PCA) showed to what extent the individual N-compounds are informative of status and quality of the humic acid fraction of SOM. As a whole, the results obtained by Py-GC/MS suggest that indoles, alkylindoles, alkylbenzimidazoles and alkylpyridines could be indicators of SOM accumulation while unsubstituted benzonitrile and pyridine are related to SOM qualityThis work was supported by grants CGL2013-43845-P and BES2014-069238 from the Spanish Ministry of Economy and Competitiveness (MINECO

    Bioelectrochemically-assisted degradation of chloroform by a co-culture of Dehalobacter and Dehalobacterium

    Get PDF
    Using bioelectrochemical systems (BESs) to provide electrochemically generated hydrogen is a promising technology to provide electron donors for reductive dechlorination by organohalide-respiring bacteria. In this study, we inoculated two syntrophic dechlorinating cultures containing Dehalobacter and Dehalobacterium to sequentially transform chloroform (CF) to acetate in a BES using a graphite fiber brush as the electrode. In this co-culture, Dehalobacter transformed CF to stoichiometric amounts of dichloromethane (DCM) via organohalide respiration, whereas the Dehalobacterium -containing culture converted DCM to acetate via fermentation. BES were initially inoculated with Dehalobacter, and sequential cathodic potentials of −0.6, −0.7, and −0.8 V were poised after consuming three CF doses (500 μM) per each potential during a time-span of 83 days. At the end of this period, the accumulated DCM was degraded in the following seven days after the inoculation of Dehalobacterium. At this point, four consecutive amendments of CF at increasing concentrations of 200, 400, 600, and 800 μM were sequentially transformed by the combined degradation activity of Dehalobacter and Dehalobacterium. The Dehalobacter 16S rRNA gene copies increased four orders of magnitude during the whole period. The coulombic efficiencies associated with the degradation of CF reached values > 60% at a cathodic potential of −0.8 V when the degradation rate of CF achieved the highest values. This study shows the advantages of combining syntrophic bacteria to fully detoxify chlorinated compounds in BESs and further expands the use of this technology for treating water bodies impacted with pollutants

    Diagnosis and Stratification of Pseudomonas aeruginosa Infected Patients by Immunochemical Quantitative Determination of Pyocyanin From Clinical Bacterial Isolates

    Get PDF
    Pseudomonas aeruginosa; Monoclonal antibody; PyocyaninPseudomonas aeruginosa; Anticuerpo monoclonal; PiocianinaPseudomonas aeruginosa; Anticòs monoclonal; PiocianinaThe development of a highly sensitive, specific, and reliable immunochemical assay to detect pyocyanin (PYO), one of the most important virulence factors (VFs) of Pseudomonas aeruginosa, is here reported. The assay uses a high-affinity monoclonal antibody (mAb; C.9.1.9.1.1.2.2.) raised against 1-hydroxyphenazine (1-OHphz) hapten derivatives (PC1; a 1:1 mixture of 9-hydroxy- and 6-hydroxy-phenazine-2-carobxylic acids). Selective screening using PYO and 1-OHphz on several cloning cycles allowed the selection of a clone able to detect PYO at low concentration levels. The microplate-based ELISA developed is able to achieve a limit of detection (LoD) of 0.07 nM, which is much lower than the concentrations reported to be found in clinical samples (130 μM in sputa and 2.8 μM in ear secretions). The ELISA has allowed the investigation of the release kinetics of PYO and 1-OHphz (the main metabolite of PYO) of clinical isolates obtained from P. aeruginosa-infected patients and cultured in Mueller-Hinton medium. Significant differences have been found between clinical isolates obtained from patients with an acute or a chronic infection (~6,000 nM vs. ~8 nM of PYO content, respectively) corroborated by the analysis of PYO/1-OHphz levels released by 37 clinical isolates obtained from infected patients at different stages. In all cases, the levels of 1-OHphz were much lower than those of PYO (at the highest levels 6,000 nM vs. 300 nM for PYO vs. 1-OHphz, respectively). The results found point to a real potential of PYO as a biomarker of P. aeruginosa infection and the possibility to use such VF also as a biomarker for patient stratification[2] and for an effective management of these kinds of infections.This work has been funded by the Spanish Government to M-PM through the Ministry of Science and Innovation (SAF2015-67476-R, RTI2018-096278-B-C21, PI, M-PM) and by Fundació Marató de TV3 (201825-30-31, PI, M-PM). The Nb4D group is a consolidated research group (Grup de Recerca) of the Generalitat de Catalunya and has support from the Departament d’Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya (expedient: 2017 SGR 1441). CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund (ERDF). Moreover, BR-U has an FI fellowship from the AGAUR (Agència de Gestió d’Ajuts Universitaris I de Recerca) of the Government of Catalonia (Generalitat de Catalunya) (2019FI_B00289). El Fons social Europeu Inverteix en el teu futur

    An Immunochemical Approach to Detect the Quorum Sensing-Regulated Virulence Factor 2-Heptyl-4-Quinoline N-Oxide (HQNO) Produced by Pseudomonas aeruginosa Clinical Isolates

    Get PDF
    Pseudomonas aeruginosa; Quorum sensing; VirulencePseudomonas aeruginosa; Detecció de quòrum; VirulènciaPseudomonas aeruginosa; Detección de quórum; VirulenciaUnderstanding quorum sensing (QS) and its role in the development of pathogenesis may provide new avenues for diagnosing, surveillance, and treatment of infectious diseases. For this purpose, the availability of reliable and efficient analytical diagnostic tools suitable to specifically detect and quantify these essential QS small molecules and QS regulated virulence factors is crucial. Here, we reported the development and evaluation of antibodies and an enzyme-linked immunosorbent assay (ELISA) for HQNO (2-heptyl-4-quinoline N-oxide), a QS product of the PqsR system, which has been found to act as a major virulence factor that interferes with the growth of other microorganisms. Despite the nonimmunogenic character of HQNO, the antibodies produced showed high avidity and the microplate-based ELISA developed could detect HQNO in the low nM range. Hence, a limit of detection (LOD) of 0.60 ± 0.13 nM had been reached in Müeller Hinton (MH) broth, which was below previously reported levels using sophisticated equipment based on liquid chromatography coupled to mass spectrometry. The HQNO profile of release of different Pseudomonas aeruginosa clinical isolates analyzed using this ELISA showed significant differences depending on whether the clinical isolates belonged to patients with acute or chronic infections. These data point to the possibility of using HQNO as a specific biomarker to diagnose P. aeruginosa infections and for patient surveillance. Considering the role of HQNO in inhibiting the growth of coinfecting bacteria, the present ELISA will allow the investigation of these complex bacterial interactions underlying infections. IMPORTANCE Bacteria use quorum sensing (QS) as a communication mechanism that releases small signaling molecules which allow synchronizing a series of activities involved in the pathogenesis, such as the biosynthesis of virulence factors or the regulation of growth of other bacterial species. HQNO is a metabolite of the Pseudomonas aeruginosa-specific QS signaling molecule PQS (Pseudomonas quinolone signal). In this work, the development of highly specific antibodies and an immunochemical diagnostic technology (ELISA) for the detection and quantification of HQNO was reported. The ELISA allowed profiling of the release of HQNO by clinical bacterial isolates, showing its potential value for diagnosing and surveillance of P. aeruginosa infections. Moreover, the antibodies and the ELISA reported here may contribute to the knowledge of other underlying conditions related to the pathology, such as the role of the interactions with other bacteria of a particular microbiota environment.This work has been funded by the Ministry of Science and Innovation (SAF2015-67476-R and RTI2018-096278-B-C21) and Fundación Marató de TV3 (TV32018-201825-30-31). The Nb4D group is a consolidated research group (Grup de Recerca) of the Generalitat de Catalunya and has support from the Departament d’Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya (expedient: 2017 SGR 1441). CIBER-BBN is an initiative funded by the Spanish National Plan for Scientific and Technical Research and Innovation from 2013 to 2016, Iniciativa Ingenio 2010, Consolider Program, and CIBER Actions were financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. Enrique J. Montagut and Juan Raya wish to thank the FPI fellowship (BES-2016-076496 and PRE2019-087542, respectively) from the Spanish Ministry of Science and Innovation. The Custom Antibody Service (CAbS) is acknowledged for its assistance and support in the production of HQNO antibodies
    corecore